
Migrating from
Java 8 to Java 11

A Guide Note

Prepared by InApp
March 2019

Table of Contents

Summary 3

3
3

3

4

4
4

5

6

6
6

7

9

10

10

Why this note?

Reason for the move

Sticking on to the Java 8

Moving to Oracle Java 11

3

Java - A Brief History

Java Editions

 Enterprise Edition (J2EE)

 Standard Edition (SE) 4

Java SE Releases

Java 11 and Further

Java SE Release Cadence

Java 11 Licensing

Option: Staying with Java8

Option: Moving to Java 11

Migration from Java 8 to Java 11

Run Current Application on JDK11

Next Steps

References

6

9

Summary
Why this note?

Three significant events have happened recently in Java and Java development

JDK version 11 and 12 have been released

JDK 8 support is stopping from January 2019

Oracle is implementing commercial licensing for Java
Development Kit

1.

2.

3.

This is the first note for InApp’s clients and its developers to understand the key
reasons for the need to move to JDK 11 and our recommended procedure for
moving to Java 11 and beyond.

Reason for move
The main reason to move on to Java 11 is the stoppage of support for Java 8
JDK and the consequent non-availability of patches and security fixes to the
JDK and Java 8 libraries. The other reasons include the new features of the
language and the Development Kit, which makes it useful to move.

Sticking on to the Java 8
For some time at-least we can stick on to JDK if we are supported by non-oracle
vendors like IBM WebSphere and RedHat’s JBoss as these vendors will release
the security fixes. Another option is to use the Open Source JDK supported by
communities including the Oracle Supported OpenJDK. This will remain free with
community support.

Moving to Oracle Java 11
This may be the option most people will take. Moving to JDK 11 is not as difficult
since most of the JDK 8 programs will run directly on JDK 11. There are tools avail-
able to run through your source code and check the same. We recommend that
users move to JDK 11 with the existing code and probably minor variations. Then
in the next phase try and take advantage of the new features of JDK 11.

NOTE: It may be please noted that this is NOT a universal document for all cases of Java usage.
Each particular instance or project and implementation is unique in itself and have to be handled
with care to its environment and priorities. This document is a high level document to make clients
and our own Java team aware of the changes and InApp’s generic approach.

Java - A Brief History

Java was originated under the leadership of
James Gosling by the Sun Microsystems in 1995.
The first version came out in Jan 1996. Its success
came from it becoming a web programming
language. The concepts of JSP, JDBC and others
made it suitable for Enterprise Applications on
the web. Java has been a prime product from
Sun Microsystems until it was taken over by
Oracle and it is now maintained by Oracle Cor-
poration.

Java Editions
There were two popular streams of Java the Standard Edition and Enterprise Edi-
tion. They have a very mixed history and for more information, please look up the
Wikipedia Pages on Java and J2EE.

Enterprise Edition (J2EE)

The Enterprise Edition was a popular edition and has been used in many applica-
tions and application frameworks like the IBM’s Websphere, Oracle’s Weblogic,
RedHat’s JBoss, Apache’s Tomcat and many more.

Java EE was maintained by Oracle
under the Java Community Process.
On September 12, 2017, Oracle Corpo-
ration announced that it would
submit Java EE to the Eclipse Founda-
tion. The Eclipse Foundation was
forced to change the name of Java EE
because Oracle owns the trademark
for the name "Java." On February 26,
2018, it was announced that the new
name of Java EE will be Jakarta EE.

InApp's advice will be to completely
move out of J2EE and consider
reengineering the application to
Java SE or other programming envi-
ronments like PHP, Python for
back-end and HTML, JavaScript for
the front end.

J2EE Users

Standard Edition (SE)

Java Standard Edition has emerged as the popular edition post-2010 and
Oracle continues to maintain it and develop it. Currently, it is on Version 12.

Java SE Releases

Java Standard
Edition Release Dt.

March, 2014
(LTS**)

Support Till

Java 8

Major New Features

Commercial Users
January, 2019

Personal Users:
End 2020

Lambda expressions,
Method references,
Functional interfaces,
Stream API,
Default methods

Java 9

September, 2017
(Non LTS)

March, 2018 Platform Module System
(Project Jigsaw)
Interface Private Methods
Try-With Resources
Anonymous Classes

Java 10

March, 2018
(Non LTS)

September, 2018 Application Data-Class Sharing
Parallel Full GC for G1
Local-variable type inference

March, 2018
(Non LTS)

Java 11

July 2019

** LTS Versions are “major versions” where Oracle support is for a longer term.

Run Java File with single command
Removed the Java EE and CORBA
Modules Reactive HTTP/2 Client
Epsilon GC

For more information, please refer:

https://www.oracle.com/technetwork/java/java-se-support-roadmap.html

Java 11 and Further
Java SE Release Cadence

Oracle has moved from big bang major releases often at an interval of 3 years or
more to a more streamlined fixed “feature releases”,

new major release every six months (March and September)

two minor updates for each (one and four months later)

There will not be any beta versions. All Java releases will be major releases which
contain only features that are ready to be used. The new cadence makes it more
manageable and predictable for third party tools vendors, as there will be a
steady stream of smaller updates.

Java 11 Licensing

As of Java 11 Oracle now maintains two different JDK builds:

All Java/JDK development is done in the public OpenJDK repository and then they
are propagated to the Oracle JDK. Hence, Oracle JDK builds and OpenJDK builds
will be essentially identical but with some cosmetic and packaging differences
(mainly in the license and support model).

Since Java 11, as Oracle’s commercial JDK and Oracle’s OpenJDK builds are func-
tionally the same, we should be able to run our applications on either without
having to make any changes or losing any features.

Option: Staying with Java 8

The code on Java SE 8 will run on Java SE 11 without any changes. Hence there is
no immediate need for reengineering. However, it is highly recommended to step
to Java 11 platform as it has many features and makes the system easier to use.

Oracle JDK 8 is undergoing the “End of Public Updates” process, and there will be
no more free updates for commercial use after January 2019.

Oracle’s JDK is fully commercial and applications can be developed and
tested on the development environment. However we will have to pay if we
need to use the application to run in production.

Oracle’s OpenJDK (open source) – We can use this for free in any environ-
ment, like any open source library

Staying with Oracle's Java SE 8 has the following implications:

Security: Theoretically, Oracle JDK 8 can be used indefinitely without up-
dates. But your application is open to vulnerabilities and hacking as there
are no further updates.

OS Updates:The Linux OSes will update Java 8 using OpenJDK or other
sources. On platforms such as Red Hat, Debian, Fedora, Arch, etc updates
to the JDK are delivered via the operating system vendor. Companies like
Red Hat have promised Java 8 updates until June 2023 in Red Hat Enter-
prise Linux - but they also have an "upstream first" policy, meaning they
prefer to push fixes back to the "upstream" OpenJDK project.

Users of other platforms like IBM WebSphere, RedHat JBoss, TomCat can
depend upon the upgrades from these vendors and can stay on Java 8.

Use the non-commercial build in a commercial setting - Oracle will pro-
vide builds of Oracle JDK 8 for non-commercial use until December 2020,
so we could use this loophole but it is essentially illegal to use Java 8 for
commercial purposes.

Companies can either go onto a paid support plan or use a Java SE 8 / OpenJDK
8 binary distribution from another provider or continue to use Oracle JDK 8 indefi-
nitely without updates. If you are not using Oracle JDK 8, then your current Java SE
8 / OpenJDK 8 provider will provide updates and/or paid support plans to choose
from.

Some options available include:

Paying for support - A number of companies, including Azul, IBM, Oracle
and Red Hat, offer ongoing support for Java. By paying the vendors, you
get access to the stream of security patches and update releases with
certain guarantees (as opposed to volunteer-led approaches).

Companies build OpenJDK themselves - The stream of security patches *
is published to a public Mercurial repository under the GPL license. The
company will have to build OpenJDK themselves keeping track of com-
mits to the repository.

Use the builds from AdoptOpenJDK - AdoptOpenJDK community takes
the stream of security patches * and turn them into releases. Their plan is
to produce Java 8 builds until September 2023 or later (two years after
Java 17 comes out). As it is a community build farm project there won't be
any warranty or organised support.

Java 11 did not have any major language changes but has taken the ad-
vantage of features released in the earlier versions including Java 8, 9
and 10. Java 8 code will run under Java 11, 12 and further as they will be
backward compatible. However it will be very useful to take advantage of
the enhancements provided by Java 11.

Option: Moving to Java 11

Some of the core enhancements include:

1. Full support for containers
Containerizing applications in Docker makes it easy to abstract key appli-
cation elements from the infrastructure and thus makes it easier to scale
services with changing demand.

The JVM now recognizes constraints set by container control groups. Both
memory and cpu constraints can be used to manage Java applications
directly in containers. These include:

Adhering to memory limits set in the container

Setting available cpus in the container

Setting cpu constraints in the container

2. Java Platform module system
The Java Platform module system introduces a new kind of Java pro-
graming component, the module, which is a named, self-describing col-
lection of code and data. Now we can pack a customized subset of JRE,
based on the individual needs of the applications that run on it and
increase their efficiency manifold with a drastically reduced footprint and
increased performance.

It provides support for the new framing and connection handling parts
of the protocol.

It supports HTTP/1.1 and HTTP/2, both synchronous and asynchronous
programming models,

It handles request and response bodies in a reactive manner which
gives you full control over the bytes going over the wire:

3. Supports HTTP/2 Requests And Responses
The new API makes a clean break with the past, by abandoning any
attempt to maintain protocol independence. Instead, the API focuses
solely on HTTP.

You can throttle, you can stream (to conserve memory), and you can
expose a result as soon as you found it (instead of waiting for the
entire body to arrive).

Allows clients to indicate cancellation of requests that a server has
already started working on.

4. Support parallel full garbage collection on G1 - A scalable, low-latency gar-
bage collector, ZGC or Z Garbage Collector, is added along with Epsilon GC, an
experimental No-op Garbage Collector

5. Flight Recorder, Flight Recorder which earlier used to be a commercial add-on
in Oracle JDK is now open sourced. JFR is a profiling tool used to gather diag-
nostics and profiling data from a running Java application. Its performance
overhead is negligible and that’s usually below 1%. Hence it can be used in pro-
duction applications.

6. Heap allocation on alternative memory devices - Accessible via JVMTI, a
low-overhead heap profiling is now available

7. Ahead-of-time compilation and GraalVM.

8. Transport Layer Security (TLS) 1.3.

9. JShell.

10. Support for “shebang” Java files! #!/bin/java

Migration from Java 8 to Java 11

Run Current Application on JDK11
The major incremental steps for migration are:

1. Run an existing Java application with JDK 11.

2. Compile the application with Java 11.

3. Modularize the application to use Module System (you are not required

Run the application

First of all, download and install the latest JDK release. The application (jars)
created with earlier Java versions can run on JDK 11 without major issues, Some
exceptions are:

If the code depends on Java EE or CORBA modules which were removed
from JDK.

Some libraries that need to be upgraded.

Missing classes will be needed to add explicitly in case of class file errors
please update the Java bytecode enhancement libraries like ASM, bytebud-
dy, javassist or cglib.

If your application starts successfully, look carefully at your tests and ensure that
the behaviour is the same as on the JDK version you have been using. For exam-
ple, a few early adopters have noticed that their dates and currencies are for-
matted differently. To ensure that the code works on the latest JDK release, un-
derstand the new features and changes in each of the JDK releases.

The following steps are iterative -
1. Update Third-Party Libraries
Everything needs to be updated, including the IDE, build tool, its plugins, and,
most importantly, the dependencies. Some dependencies that we need to
monitor (and versions that are known to work on Java 11):

to create modules to have your code run on Java 11)

Build tools like Maven or Gradle

IDE’s like NetBeans, Eclipse, and IntelliJ IDEs all have versions available that
include support for the latest JDK.

Anything that operates on bytecode like ASM (7.0), Byte Buddy (1.9.0),
cglib (3.2.8), or Javassist (3.23.1-GA). Since Java 9, the bytecode level is
increased every six months, so we will have to update libraries like these
pretty regularly.

Anything that uses something that operates on bytecode like Spring (5.1),
Hibernate, Mockito (2.20.0), etc.

Here are the recommended minimum versions for a few tools:

IntelliJ IDEA: 2018.2

Eclipse: Photon 4.9RC2 with Java 11 plugin

Maven: 3.5.0

Compiler plugin: 3.8.0

Surefire and failsafe: 2.22.0

Gradle: 5.0

2. Compile Your Application with Java 11 if needed
Compiling your code with the latest JDK compiler will ease migration to future
releases since the code may depend on APIs and features, which have been
identified as problematic.

3. Run jdeps on Your Code.
Run the jdeps tool on your application to see what packages and classes your
applications and libraries depend on. If you use internal APIs, then jdeps may
suggest replacements to help you to update your code.

Next Steps

Once the application is working on JDK 11, some suggestions that can help
you get the most from the Java SE Platform:

If needed, cross-compile to an older release of the platform using the new
-–release flag in the javac tool.
Take advantage of your IDE’s suggestions for updating your code with the
latest features.
Find out if your code is using deprecated APIs by running the static analysis
tool jdeprscan. These APIs can be removed from the JDK, but only with
advance notice.

1.

2.

3.

Get familiar with new features like multi-release JAR files (see jar)

Stick to supported apis

Use standardized behaviour

Use well-maintained projects

Keep dependencies and tools up to date

Consider using jlink

4.

5.

6.

7.

8.

9.

Start taking advantages of JDK 11 features

The first initiative for larger organisations would be to move to Modular

Structure of programs

Use of the ‘var’ in variable declarations makes writing code simple and

error free.

JShell: A shell for trying out simple programs like in Python or Ruby and

other scripting languages.

The HTTP/2 features

JFR (Java Flight Recorder) profiling tool included in the release

Many more...

References

h t t p : / / w w w . o r a c l e . c o m / t e c h n e t w o r k / j a v a / j a v a s e / 1 1 - r e l n o t e - i s -
sues-5012449.html#NewFeature

https://wiki.openjdk.java.net/display/quality/Quality+Outreach

